Quantification of thermo-halotolerant alkaline protease activity derived from *Bacillus licheniformis* strains isolated from extreme environments in Morocco

Taha Chouati¹,²; Ounayssa Ayadi¹,³; Mohammed Ajdig¹,⁴; Lahcen Ouchari¹,⁴; Bahia Rached¹,³; Jamila El Alami¹; Elmostafa EL Fahime¹,²*

¹Functional Genomic analysis platform and CCMM, National Center for Scientific and Technical Research (CNRST), Morocco; ²Genopath Research Center, ERNN, Faculty of Medicine and Pharmacy, University Mohammed V of Rabat, Morocco; ³Laboratory of physical chemistry and biotechnologies of biomolecules and materials, University Hassan II Casablanca, FSTM, Mohammedia, Morocco; ⁴Microbiology and Molecular Biology Team, Plant and Microbial Biotechnology, Biodiversity and Environment Center, Faculty of Sciences, Mohammed V University in Rabat, Morocco

*Corresponding author E-mail: m.elfahime@gmail.com

Received: 2 October, 2023; Accepted: 8 November, 2023; Published online: 11 November, 2023

Abstract

Proteases; especially alkaline proteases, constitute the most used group of enzymes in industry. The wide scope of their application requires varying properties; most commonly stability throughout the conditional changes that would occur during the various industrial processes. This study aimed to identify the potentially interesting bacterial strains obtained from Moroccan extreme environment, and evaluate their proteolytic activity under the various growing conditions. In this study, the impact of temperature and salinity on the alkaline protease activity (pH 11) of 33 *Bacillus* strains deposited in the Moroccan Coordinated Culture Collection, which originated from the various extreme environments from Morocco, was studied. Bacterial identification to the species level was performed using 16S rRNA gene sequencing and MultiLocus Sequence Typing (MLST), a technique that is much more precise and can identify the bacteria to the strain level. Strain B950 showed a relatively stable protease activity at the tested extreme conditions (i.e., 130.8 U/ ml at 60 °C and 10 % NaCl). On the other hand, strain B961 displayed a better overall activity at either high temperature (140.8 U/ ml) or salinity (137 U/ ml); however, it was not as stable as when grown under both extreme conditions. Regarding identity of the bacterial strains, they were all representatives of *Bacillus licheniformis*; although B950 and B961 strains belonged to Sequence Types 3 and 5, respectively.

Keywords: Alkaline protease, *Bacillus licheniformis*, Extremo-tolerance, MultiLocus sequence typing scheme
1. Introduction

Proteases are hydrolytic enzymes that digest proteins by cleaving the peptide bonds among the amino acids. Their role in proteolysis makes them useful for a wide variety of industries such as waste management; food processing, and silver recovery (Zhu et al., 2019; Lin et al., 2022; Sujitha and Shanthi, 2023). Thus, they are commercially important industrial enzymes representing roughly 60% of the total enzyme production; where 35% of them are alkaline proteases (Hasan et al., 2022).

Alkaline proteases are enzymes of significant industrial importance due to their activity under various pH values that range from neutral to basic. Their structural stability, particularly their ability to endure extreme conditions such as high temperatures (Chauhan et al., 2021; Talhi et al., 2022) or salinity (Ugbede et al., 2023), is a key focus in enzyme research for industrial applications. They present a solution for several industrial processes that would normally denature the normal proteolytic enzymes, such as the detergent and leather production industries (Sellami-Kamoun et al., 2008; Hasan et al., 2022).

The proteases are found in plants; animals, and microbes (Barrett and McDonald, 1986). The latter are a much preferred source for the industrial protease production due to several characteristics; notably their ease of culture coupled with a high production yield, in addition to a relatively simpler genetic manipulation challenge (Lv et al., 2023). Although the mold fungi (Hashmi et al., 2022) and yeast fungi (De Brabander et al., 2023) can be used for protease production; however, the bacteria; especially members of Bacillus taxa, are the major producers of these enzymes, due to the multitude of novel enzymes they produce (Pham et al., 2019; Sedaghat et al., 2022).

Bacillus genus is highly versatile both phenotypically and genetically, which led to its frequent reclassifications, such as the case of B. subtilis group (Deng et al., 2023). B. licheniformis is a Gram (+); facultative aero-anaerobic, endospore forming bacterium. This bacterium is ubiquitous in the environment but is mainly found in the soil. Furthermore, B. licheniformis possesses the GRAS (Generally Regarded As Safe) status (de Boer et al., 1994), which makes B. licheniformis an ideal bacterium for research for the potentially useful enzymes (He et al., 2023). Furthermore, many strains of this species show interesting growth capabilities under the diverse conditions, which may reflect their enzymatic activities (Caulier et al., 2019).

The objectives of this study were to evaluate the thermal and halogenic stability of the alkaline protease activity of 33 Bacillus strains, and propose an updated identification for the interesting strains using 16S rRNA gene sequencing and MultiLocus sequence typing (MLST) scheme.

2. Material and methods

2.1. Strains origin and culture

This study concerned with 33 Bacillus strains that were deposited in the Moroccan Coordinated Collection of Microorganisms (CCMM). They were previously isolated from various extreme environments in Morocco and were identified as B. aerius (Aanniz et al., 2015). However, they were reclassified as Bacillus spp. in regard to the doubt over B. aerius classification (Dunlap, 2015). All these strains were revivified from cryo-conserved tubes containing 20% glycerol. Fresh 24 h cultures of Bacillus spp. grown at 37 °C on Tryptone Soy Agar and Broth (TSA and TSB, respectively) (BIORAD, USA, CA), were prepared before each assay. Prior to this study, all Bacillus strains were subjected also to routine microbiologic assays; Gram staining, and detection of oxidase and catalase activities.

2.2. Protease production under different culture conditions
Skim milk agar (in g/ l; Skim milk powder: 28, casein enzymatic hydrolysate: 5, Yeast extract: 2.5, Dextrose: 1, and agar 15) was prepared with different pH values (6 - 10) using 1N NaOH. The selected strains were inoculated individually at each pH value, incubated at 37 °C and 55 °C, and monitored for 3 d. The protease activity of each bacterial strain was revealed by the formation of a clear zone around the cultures (Sulaiman et al., 2019). For each Bacillus strain, the size of the halos was measured and compared; those showing a clear zone equal or exceeding 8 mm in diameter after 3 d of incubation were selected for further assays.

2.3. Crude enzyme extraction

For crude protease enzyme extraction, the previously selected Bacillus strains were cultured individually in 15 ml TSB at 37 °C. After 24 h of incubation, the optical density (OD) of the obtained cultures was measured at 600 nm using EPOCH2 spectrophotometer (Agilent Technologies, CA, USA), to ensure that the growth was similar. Approximately, 2 ml of each broth culture was centrifuged at 12 000 x g for 10 min. at 4 °C. This process was repeated successively three times for each strain under the same conditions. Finally, the supernatants were filtered individually through a 0.22 µm Millipore filter (Millex GP, Germany), and the resulting filtrate was considered as the crude enzyme extract, which was stored at 4 °C, in reference to the previous methodology conducted by Liu et al., (2013).

2.4. In vitro estimation of the crude enzyme activity under different conditions

Crude enzyme activity was estimated in vitro using agar well diffusion assay (Ramadhan et al., 2021). SMA Petri plates were prepared and their pH values were adjusted to 9 and 10 using 1N NaOH solution (Sigma-aldrich, Germany). Using a sterile cork borer, 8 mm diameter wells were cut aseptically in the agar surface and 8 µl of the crude enzyme was inoculated in each well. The plates were incubated at 37 °C and 55 °C for each strain and monitored for 3 d. For each bacterial strain, the crude enzyme extract was prepared, this assay was performed in triplicates, and the mean diameter of the halo zone formed due to casein hydrolysis was measured using a calibrated ruler. The tested protease enzymes producing mean halo zone diameters of 5 mm or more were selected for further study.

2.5. Quantitative estimation of the crude enzyme activity

The crude enzyme activity of each tested Bacillus strain was measured quantitatively using a non-specific protease activity assay following the standard protocol reported by Cupp-Envard, (2008). Briefly, 400 µl of each crude enzyme extract was added to 400 µl of casein solution (10 g/ l) as a substrate and incubated for 10 min. at the tested temperature. The reaction was stopped by adding 800 µl of TriChloroAcetic acid (TCA). Afterwards, 200 µl of the reaction mixture was dispatched on a microplate, and 1 ml of Na₂CO₃ solution was added, followed by 200 µl of Folin’s reagent. After 20 min. of incubation at 40°C, the produced L-tyrosine was estimated spectrophotometrically through measurement of the OD at 680 nm using EPOCH2 spectrophotometer (Agilent Technologies, CA, USA). The data was compiled; plotted using tyrosine as a standard, and finally the quantitative enzymatic activity was estimated. The assay was carried out at pH 11 under different conditions; mainly two incubation temperatures (55 and 60 °C) and two NaCl concentrations (0 % and 10 %) were tested for the casein solution (substrate). This led to obtaining four sets of conditions, including 55 °C and 0 % NaCl; 60 °C and 0 % NaCl; 55 °C and 10 % NaCl; 60 °C and 10 % NaCl).

2.6. Identification of the tested Bacillus strains

The bacterial DNA of each Bacillus sp. was extracted using MAGPURIX robot and its quality was assessed using Nanodrop 8000 (Thermo-fisher Scientific, MA, USA). The DreamTaq kit was used to amplify a total of 7 fragments according to the
2.7. MultiLocus sequence typing and phylogenetic analysis

The multiLocus sequence typing (MLST) is a method that uses the sequences of different housekeeping genes in order to provide a strain typing. This technique is precise concerning strain differences; however, it can only be applied to specific and/or close species. For *B. licheniformis*, the followed MLST scheme relied on six housekeeping genes shown in Table (1), following the previous method conducted by Madslien *et al.*, (2012). The process of amplifying and sequencing of each gene was conducted in a manner consistent with the methodology used in the previous subtitle. The sequences of the six genes were then modified and assembled using the UGENE software solution, followed by sequence alignment using MEGA XI. Following analysis of all sequences in the PubMLST database, the identification of alleles was conducted, and then the sequence types (ST) for each strain was retrieved.

2.8. Statistical analysis

The significance of the difference between the replicates was determined using a two-way ANOVA according to the studied parameters. A significant difference was considered only when those parameters had a significance level at \(p < 0.05 \).

3. Results

3.1. Screening for protease activity

The clear zone formed around the *Bacillus* cultures varied greatly. This preliminary screening revealed that 18 out of the 33 *Bacillus* strains displayed a halo zone of 8 mm diameter or more under the normal culture conditions (37 °C; pH 7). However, 11 *Bacillus* strains showed consistent results at the other tested conditions (37 °C, pH10 and 55 °C; pH10). These strains were selected for further tests.

3.2. Crude enzyme extract activity

Among the 11 *Bacillus* strains that were selected, a total of 7 strains exhibited *in vitro* encouraging outcomes, as indicated by the presence of a degrading halo zone exceeding 5 mm in diameter. These promising results were deduced either due to the substantial diameter of the halo zone displayed by the *Bacillus* strains and/or their consistent manifestation across the different tested culture conditions. A summary of these findings is presented in Table (2). A two-way analysis of variance (ANOVA) was performed; indicating a statistically significant interaction between the temperature and pH in relation to the halo zone diameter, where \(F (3-10) = 6.09, p = 0.05 \).

3.3. Quantitative estimation of protease activity

The majority of *Bacillus* strains exhibited notable protease enzyme efficacy at pH 11 and at a temperature of 55 °C; however, B950 and B961 strains demonstrated superior performance compared with the other strains. When the temperature was increased to 60 °C or the concentration of NaCl was elevated to 10 %, the enzyme activity of the majority of the *Bacillus* strains decreased to differing extents; with the
Table 1: Details about the primer sets (i.e., forward and reverse) used for amplification of the target regions of 6 house-keeping genes used for MLST scheme

<table>
<thead>
<tr>
<th>Gene</th>
<th>Name</th>
<th>Forward primer 5’-3’ sequence</th>
<th>Reverse primer 5’-3’ sequence</th>
<th>Temp. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>adk</td>
<td>Adenylate kinase</td>
<td>GGT AAA GGG ACA CAG GCT GA</td>
<td>TCG AGT AAA GGC TGG GTT TG</td>
<td>58</td>
</tr>
<tr>
<td>ccpa</td>
<td>Transcriptional regulator</td>
<td>TAT GAT GTA GCA CGC GAA GC</td>
<td>TAT CCC CAA GCG CTC TTT TA</td>
<td>58</td>
</tr>
<tr>
<td>recF</td>
<td>Recombination protein F</td>
<td>ACG GTT CTG TTC CCA TTC AG</td>
<td>CAT CAC GGC CAT TGA CAT AG</td>
<td>58</td>
</tr>
<tr>
<td>sucC</td>
<td>Succinyl-CoA synthetase, subunit beta</td>
<td>GGG TCC CGA CGG CCA ACA AA G</td>
<td>GGC CGG TTC CCC TCC GTA GT</td>
<td>58</td>
</tr>
<tr>
<td>rpoB</td>
<td>DNA-directed RNA polymerase, subunit beta</td>
<td>AGG TCA ACT AGT TCA GTA TGG ACG</td>
<td>AAG AAC CGT AAC CGG CAA CTT</td>
<td>58</td>
</tr>
<tr>
<td>Spo0A</td>
<td>Transcriptional regulator</td>
<td>GAA GTG CTT GGT GTC GCA TA</td>
<td>TGT GTA GCC GAA AAG TGA CG</td>
<td>58</td>
</tr>
</tbody>
</table>

Where; the table contains the names of the genes; their abbreviations, the forward and reverse sequences, as well as the annealing temperature
Table 2: Halo diameters (mm) for each selected Bacillus strain after 72 h incubation at 37 °C with pH 9 and pH 10, as well as at 55°C with pH 9 and pH 10

<table>
<thead>
<tr>
<th>Temp. (C °)</th>
<th>pH 9</th>
<th>pH 10</th>
<th>pH 9</th>
<th>pH 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strain no.</td>
<td>Halo diameter (mm)</td>
<td>Halo diameter (mm)</td>
<td>Halo diameter (mm)</td>
<td>Halo diameter (mm)</td>
</tr>
<tr>
<td>B956</td>
<td>4.7 ± 2.1</td>
<td>1.7 ± 1.7</td>
<td>5.0 ± 1.4</td>
<td>5.0 ± 0.8</td>
</tr>
<tr>
<td>B958</td>
<td>7.0 ± 0.8</td>
<td>6.0 ± 1.4</td>
<td>6.0 ± 1.6</td>
<td>3.0 ± 2.2</td>
</tr>
<tr>
<td>B959</td>
<td>3.3 ± 2.6</td>
<td>2.0 ± 0.8</td>
<td>4.0 ± 2.4</td>
<td>3.7 ± 0.9</td>
</tr>
<tr>
<td>B967</td>
<td>7.0 ± 1.4</td>
<td>7.0 ± 1.6</td>
<td>6.3 ± 2.1</td>
<td>2.0 ± 0.8</td>
</tr>
<tr>
<td>B773</td>
<td>5.0 ± 2.2</td>
<td>4.7 ± 2.1</td>
<td>5.7 ± 1.7</td>
<td>2.0 ± 2.2</td>
</tr>
<tr>
<td>B780</td>
<td>5.0 ± 0.8</td>
<td>2.0 ± 1.4</td>
<td>3.0 ± 2.2</td>
<td>2.0 ± 0.8</td>
</tr>
<tr>
<td>B814</td>
<td>5.0 ± 2.2</td>
<td>4.7 ± 1.9</td>
<td>4.0 ± 1.6</td>
<td>2.7 ± 2.1</td>
</tr>
<tr>
<td>B821</td>
<td>5.0 ± 1.6</td>
<td>6.0 ± 1.6</td>
<td>5.0 ± 1.6</td>
<td>5.0 ± 2.2</td>
</tr>
<tr>
<td>B950</td>
<td>7.0 ± 1.4</td>
<td>7.0 ± 1.6</td>
<td>7.0 ± 1.4</td>
<td>4.0 ± 1.6</td>
</tr>
<tr>
<td>B961</td>
<td>6.0 ± 0.8</td>
<td>8.0 ± 2.2</td>
<td>7.0 ± 1.6</td>
<td>2.7 ± 1.2</td>
</tr>
<tr>
<td>B963</td>
<td>3.0 ± 1.4</td>
<td>3.0 ± 2.2</td>
<td>4.0 ± 2.8</td>
<td>4.3 ± 2.1</td>
</tr>
</tbody>
</table>

Where, each value represents the mean of three replicates; with the error margins (±) represented in the column. Names in bold represent the strains that produced halos of 5 mm or more at 55°C; regardless of the pH value.

exception of B956 and B961, which displayed an increase and little variance in the enzyme activity, respectively. The obtained results presented in Fig. (1) demonstrated that the tested experimental conditions including a pH of 11, 10 % NaCl, and a temperature of 60 °C, had a detrimental impact on the enzyme activity of all Bacillus strains; with the exception of B956 and B950, which unexpectedly displayed improved outcomes. All these results were statistically significant (p < 0.05).

3.4. 16S rRNA identification of the selected Bacillus strains

The genomic DNA from the selected 7 Bacillus strains was extracted, and the 16S rRNA gene sequence as well as the 6 additional housekeeping genes were amplified using PCR. The results of the 16S rRNA gene sequencing showed that all strains belong to *B. licheniformis* and their accession numbers were assigned, as summarized in Table (3).

3.5. MultiLocus sequence typing

The MLST analysis showed that the 7 Bacillus strains did not share the same sequence type (ST). B950 was from ST 3 while B961 was from ST 5. However, both were confirmed to belong to *B. licheniformis*.

4. Discussion

The search for bacterial proteases is a well-documented and a broadly studied subject; owing to their multiple uses and ease of production. From the industrial point of view, the production of stable enzymes that can withstand multiple extreme conditions is even more interesting. Therefore, the screening and identification reported in this study aimed to search for the potentially interesting Bacillus strains originating from regions that were poorly or insufficiently studied.

As demonstrated in Fig (1), the Bacillus strains B950 and B961 represented clear standouts under all the tested conditions. B961, specifically, showed the best yield across normal conditions (*i.e.*, 55 °C and 0 % NaCl) and displayed slightly better results at 60 °C and 10 % NaCl alone. However, this strain showed a marked decline in activity when tested at both 60 °C and 10 % NaCl, in agreement with the previously...
Fig. 1: Protease activity (U/ ml) of crude protease enzyme extract at pH 11 for each selected Bacillus strain under four different tested conditions, including 55 °C and 0 % NaCl, 60 °C and 0 % NaCl, 55 °C and 10 % NaCl, 60 °C and 10 % NaCl. The selected seven Bacillus strains were codified as follow; 6: B956, 7: B958, 9: B967, 11: B773, 16: B821, 18: B950, and 19: B961. The Error bars represent the standard deviation of the three replicates.

Table 3: BLAST results of Bacillus strains identification through amplifying the 16S rRNA gene sequence, showing the selected Bacillus strains number, their size, species identification, identity percentage, and their assigned accession numbers.

<table>
<thead>
<tr>
<th>Strains</th>
<th>Size (bp)</th>
<th>Closest relative</th>
<th>Identity (%)</th>
<th>Accession number</th>
</tr>
</thead>
<tbody>
<tr>
<td>B956</td>
<td>1484</td>
<td>Bacillus licheniformis</td>
<td>99.93</td>
<td>OR512954</td>
</tr>
<tr>
<td>B958</td>
<td>1484</td>
<td>Bacillus licheniformis</td>
<td>99.87</td>
<td>OR512955</td>
</tr>
<tr>
<td>B967</td>
<td>1470</td>
<td>Bacillus licheniformis</td>
<td>99.80</td>
<td>OR512957</td>
</tr>
<tr>
<td>B773</td>
<td>1484</td>
<td>Bacillus licheniformis</td>
<td>99.26</td>
<td>OR512959</td>
</tr>
<tr>
<td>B821</td>
<td>1432</td>
<td>Bacillus licheniformis</td>
<td>99.58</td>
<td>OR512963</td>
</tr>
<tr>
<td>B950</td>
<td>1482</td>
<td>Bacillus licheniformis</td>
<td>99.87</td>
<td>OR512966</td>
</tr>
<tr>
<td>B961</td>
<td>1484</td>
<td>Bacillus licheniformis</td>
<td>99.87</td>
<td>OR512967</td>
</tr>
</tbody>
</table>
recorded *Bacillus* strains, such as *B. megaterium* (Manavalan et al., 2020) and *B. amyloliquefaciens* (Hashmi et al., 2022), which had alkali-thermotolerant activity.

Interestingly, strains B958, B821, and B950 showed better results at 60 °C and 10 % NaCl than in the presence of either condition alone. Similarly, the previous study reported by Dammak et al., (2016) presented a *Halorubrum ezzemoulense* strain that had a thermostable halo-alkaline protease activity, and was isolated form solar saltern in Tunisia. However, the low yield for both *Bacillus* strains; mainly B958 and B821 (67.94 and 66.29 U/ ml, respectively) made them poor candidates for further uses. Meanwhile, B950 surprisingly showed the best results of protease enzyme activity at 60 °C and 10 %; expressing a better stability under these conditions.

The tolerance and stability exhibited by B950 and to a lesser extent by B961 are rarely reported among the *B. licheniformis* representatives, although these species otherwise had good output as enzyme producers (Díaz-Cornejo et al., 2023). However, a previous study reported by Asitok et al., (2022) observed that the ability of a bacterial strain to withstand multiple extreme conditions, such as high pH, temperature, and salinity is crucial; as the enzyme yield can be reasonably optimized.

In this study, molecular identification of the 7 *Bacillus* strains through 16S rRNA gene amplification showed that they all belong to *B. licheniformis*. However, this is mitigated by the high genetic closeness of *B. licheniformis* and *B. paralicheniformis* (Dunlap et al., 2015), in addition to the fact that only *B. licheniformis* strain possesses the previously mentioned “Generally Regarded As Safe” status, which means that it poses no threats to the human health (Zeigler, 2005). Different methods have been proposed for differentiation between *B. licheniformis* and *B. paralicheniformis*; resulting in mixed results (Jeong et al., 2018; Olaiide et al., 2021). Although MLST scheme has been designed for ST determination; however, it can be a robust tool for species identification (Madslien et al., 2012). While the use of such scheme helped us to identify the strains of B950 and B961 as *B. licheniformis*; however, it should be mentioned that this method uses a combination of 6 house-keeping genes, which makes it much more time and resource consuming; especially if being used for large numbers of bacterial strains.

Conclusion

This research identified *Bacillus licheniformis* strains that can tolerate high temperature, salt, and pH from the Moroccan Coordinated Collection of Microorganisms. Best-performing proteases were dosed using a modified Lowry technique. Using 16S rRNA gene sequencing and MLST, the intriguing bacteria were identified as *B. licheniformis*. B950 demonstrated high stability at pH 11, 60 °C, and 10 % NaCl, which made it a prime candidate for further study, while B961 demonstrated greater yield under alkaline circumstances with high temperature (60 °C) or salt concentration (10 %), but not both.

Acknowledgments

The authors acknowledge all members of the Coordinated Collections of Moroccan Microorganisms (CCMM) for supporting this research work.

Conflict of interests

The authors declare no conflicts of interest among them.

Funding source

This work did not receive a special funding; however, it was conducted in accordance with the working budget of the CCMM.

Ethical approval

Non-applicable.
Author's Contributions

Conceptualization, T.C., J.E. and E.E.; Data
curation, T.C., O.A. and M.A.; Formal analysis, B.R.
and L.O.; Investigation, T.C., O.A. and M.A.; Methodology, T.C, O.A. and M.A.; Project
administration, B.R., L.O. and J.E.; Software, M.A.;
Resources, L.O.; Supervision, J.E. and E.E.; Visualization, T.C, J.E and E.E.; Validation, L.O.,
B.R. and E.E.; Roles/Reviewing and editing, B.R. and E.E.

5. References

Aanniz, T.; Ouadghiri, M.; Melloul, M.; Swings, J.;
bacteria in Moroccan hot springs, salt marshes and
desert soils. Brazilian Journal of Microbiology. 46(2):
443–453. https://doi.org/10.1590/S1517-
838246220140219

Asitok, A.M.; Ekpenyong, I.; Takon, S.; Antai, N.;
protease on agro-waste-based optimized medium
through alternate combinatorial random mutagenesis of
Stenotrophomonas acidaminiphila. Biotechnology

Caulier, S.; Nannan, C.; Gillis, A.; Licciardi, F.;
Bragard, C. and Mahillon, J. (2019). Overview of the
Antimicrobial Compounds Produced by Members of the Bacillus subtilis Group. Frontiers in

Chauhan, J.V.; Mathukiy, R.P.; Singh, S.P. and
Gohel, S.D. (2021). Two steps purification,
biochemical characterization, thermodynamics and
structure elucidation of thermostable alkaline serine
protease from Nocardiopsis alba strain OM-5. International Journal of Biological Macromolecules. 169:

Protease Activity Assay-Casein as a Substrate. Journal
of Visualized Experiments. 19: 899. https://doi.org/10.3791/899

Dammak, D.F.; Smaoui, S.M.; Ghanmi, F.;
Halorubrum ezzemoulense strain ETR14 isolated from
Sfax solar saltern in Tunisia. Journal of Basic

de Boer, A.S.; Priest, F. and Diderichsen, B. (1994). On the industrial use of Bacillus licheniformis: A

De Brabander, P.; Uitterhaegen, E.; Delmulle, T.;
and progress towards industrial recombinant protein
production in yeasts: A review. Biotechnology
Advances. 64: 108121. https://doi.org/10.1016/j.biotechadv.2023.108121

Deng, F.; Chen, Y.; Xiao, H.; Yao, C.; Chen, J.;
Zhao, Y. et al. (2023). Bacillus pfraonensis sp. Nov.,
a new strain isolated from a probiotic feed additive
with low cytotoxicity and antimicrobial activity.
Research in Microbiology. 174(7): 104090.
https://doi.org/10.1016/j.resmic.2023.104090

Díaz-Cornejo, S.; Otero, M.C.; Banerjee, A. and
Microbiological Research. 268: 127276.
https://doi.org/10.1016/j.micres.2022.127276

Novel Research in Microbiology Journal, 2023

Journal of Systematic and Evolutionary Microbiology. 65(7): 2341. https://doi.org/10.1099/ijs.0.000271

