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                                     Abstract 

     In recent decades, microbial resistance to antimicrobial drugs has emerged as a global 

health crisis. Therefore, it is crucial to develop alternative therapeutic strategies to address the 

growing threat of multi-drug resistant (MDR) pathogens. Researchers and clinicians are 

increasingly focusing on plant-based products due to their antibiotic properties and lack of 

associated antibiotic resistance. Plant-based nanoparticles present several benefits, including 

their natural origin, biocompatibility, and potential for targeted delivery. Our aims in this 

review were exploration of the complexities and limitations of plant-based phytochemical 

extraction processes and addressing the challenges of synthesizing nanoparticles for 

combating multidrug-resistant (MDR) pathogens. It also examined the effectiveness of phyto-

based nanoparticles in drug delivery systems to treat MDR infections; both alone and in 

combination with antibiotics, and provided a critical assessment of their potentials as a 

research avenue. For this, we have taken the diverse methodologies that were previously used 

to select the best possible process to tackle MDR pathogens using plant extracts. Although 

using plant-derived products and nanoparticles is a novel approach to address the 

antimicrobial drug resistance; however, detailed researches are necessary to explore their 

antibacterial attributes. Specifically, transcriptome profiling should be employed to identify 

therapeutic molecules from plant-based products that can effectively combat MDR bacteria 

before synthesis of nano-drugs. The outcomes of this study will enable the researchers to 

obtain the best approaches to tackle MDR pathogens through using the nano-based 

phytochemicals.  
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1. Introduction         

       Antimicrobial resistance, led to at least 1.27 

million deaths internationally as well as nearly 5 

million casualties in 2019, which poses an immediate 

threat to public health. Over 2.8 million Americans 

suffer from antibiotic-resistant illnesses each year. 

Over 35,000 people have lost their lives due to 

antibiotic-resistance illnesses (Tenover, 2023). 

Microbes that are resistant to multiple antibiotics are 

said to exhibit multidrug resistance (MDR). Various 

resistance mechanisms have been identified in 

bacteria, including acquired resistance from other 

species, genetic mutations, and inherent resistance in 

some bacteria to specific antibiotics (Catalano, 2022). 

Excessive use of antimicrobial agents is driving to a 

rise in antibiotic resistance worldwide. This issue 

affects the nations at all stages of development, 

making resistant microorganisms difficult to treat and 

necessitates alternative and/or higher doses of 

antibiotics resulting in lack of highly effective 

antimicrobial treatments. The World Health 

Organization (WHO) has stated that MDR 

microorganisms, also known as "superbugs," are a 

major public health concern, resulting in millions of 

fatalities yearly (Bloom et al., 2018). Abuse of 

antibiotics causes the rise in antimicrobial resistance in 

bacteria, their widespread use in agriculture, and 

scarcity of novel medicines (Ventola, 2015). 

According to WHO, one of the twenty-first century's 

top three global public health concerns is the 

escalating problem of antibiotic resistance. Particularly 

worrisome are a group of bacteria known as ESKAPE 

pathogens, where each is associated with high 

mortality rates (Algammal et al., 2020). 

Nanotechnology and nanoparticle-engineered 

structures with diameters ranging from 1 to 100 nm 

has been developed in recent years to combat bacterial 

multidrug resistance (MDR) and bacterial biofilms 

(Horikoshi and Serpone, 2013). The threat posed by 

ESKAPE pathogens has been extensively studied, 

whereas the threat from other MDR bacterial strains 

has received less attention. This oversight has spurred 

the development of nanoparticles (NPs). These MDR 

bacteria's cell membrane and peptidoglycan layer are 

easily penetrated by NPs because of their tiny size and 

wide surface area to volume ratio. Since Gram-

negative bacteria have a thinner peptidoglycan 

encapsulation than Gram-positive bacteria, NPs are 

more efficient against the Gram-negative pathogens 

(Blecher et al., 2011). NPs are effective treatment of 

infections; especially those carried on by MDR 

pathogens. NPs and antibiotics can be used either 

together or individually to provide potent synergistic 

effects (Mba and Nweze, 2021). The production of 

NPs using plant-mediated synthesis is extremely 

quick, easy, reliable, safe, and eco-friendly (Sani et al., 

2022). Due to biocompatibility, safety, and 

environmental friendliness of this approach, there are 

extensive studies being conducted on the use of plant 

components, including extracts or essential oils from 

leaves, fruits, roots, stems, or seeds, for in vitro 

production of NPs (Jadoun et al., 2021).  

     Antimicrobial, antibacterial, chemotherapy for 

cancer, antioxidant, anti-inflammatory, and anti-

diabetic properties are all present in plant-mediated 

metallic nanoparticles (MNPs), which also show 

effectiveness against genotoxicity, apoptotic 

alterations, and oxidative damage (Madkour, 2018). 

NPs have recently been widely used in bio-sensing and 

bio-imaging because of their remarkable localization 

efficacy. They are often used in biosynthesis to make 

it easier for medications and other molecules to reach 

their intended locations. Currently, NPs are under 

intensive examinations in anticancer researches 

because of their capacity to selectively target and 

destroy cancer cells in a controlled way; with 

minimum harm to the adjacent healthy cells (Charbgoo 

et al., 2017).   

     Antibiotic-resistant bacteria (ARB) can be 

effectively combated by combining MNPs with 

phytochemicals. Unlike the standard antibiotics, MNPs 
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are less likely to induce resistance despite the evidence 

that bacteria can develop resistance strategies against 

them. This is attributed to the nonspecific modes of 

action of MNPs toward multiple cellular components 

(Amaro et al., 2021). Microorganisms that are resistant 

to antibiotics exhibit therapeutic potential against plant 

based NPs. These microorganisms include certain 

fungi, viruses, and bacteria such as Escherichia coli, 

Pseudomonas aeruginosa, and Staphylococcus aureus   

(Burlacu et al., 2019). Currently, we have limited 

antibiotic options available to tackle the MDR 

bacteria. Polymyxin' E' (Colistin) serves as the final 

option for treating infections caused by MDR bacteria, 

including P. aeruginosa, E. coli, Klebsiella 

pneumoniae, and Acinetobacter baumannii. NPs 

significance is heightened due to the rising prevalence 

of these life-threatening MDR infections globally 

(Sahoo et al., 2023). Besides immunological 

adaptation, resistance at the molecular level is 

primarily associated with chromosomal mutations and 

genes carried by plasmids. For millennia, the naturally 

occurring bioactive substances obtained from plants or 

bioactive phyto-compounds (BPCs) have been 

globally employed to tackle human health challenges. 

Nowadays, BPCs have become crucial strategies in the 

quest for discovering contemporary medications. 

Despite displaying promising biological activities, 

numerous BPCs face inherent limitations such as low 

solubility, structural instability, short half-life, poor 

bioavailability, and non-specific organ distribution; 

rendering them largely unsuitable for pharmaceutical 

therapeutic applications. For this reason, researchers 

have embraced newly developed nano-formulation 

(NF) technologies, offering potentials for 

strengthening the stability, pharmacokinetics, and 

pharmacodynamics of BPCs. Recently, green synthesis 

approach of silver nanoparticles (AgNPs) has been 

recorded as effective for development of antibacterial 

therapeutic applications (Vadakkan et al., 2024).  

     The objectives of this review were to highlight the 

use of different plant-based phytochemical extraction 

processes; emphasizing their complexities and 

limitations, and describes the various types of NPs 

synthesis, focusing on the challenges associated with 

their use against MDR pathogens. The review also 

discusses the challenges in drug delivery systems 

targeting MDR infections, evaluating whether phyto-

based NPs alone are sufficient or should be combined 

with antibiotics for more effectiveness. Finally, this 

review provides a critical opinion on the suitability of 

phyto-based NPs as a viable option for the researchers 

to tackle MDR pathogens.  

2. Extraction of bio-active metabolites from 

plants 

2.1.  Phytochemical's extraction and 

purification 

     Plants contain bioactive substances called 

phytochemicals to protect themselves. More than 

thousand phytochemicals have been identified, which 

can be obtained from various foods, including whole 

grains, fruits, vegetables, nuts, and herbs (Wang et al., 

2020a). Extraction is the first step in separating and 

purifying the bioactive compounds from plants. While 

it could be difficult to extract insoluble secondary 

metabolites such as flavonoids and phenolic acids, 

certain phenolic compounds are readily extracted and 

soluble in water, whereas the terpenoids and alkaloids 

are typically more soluble in non-polar solvents (Jha 

and Sit, 2021). While heat reflux, maceration, and 

Soxhlet are all efficient methods for extracting 

bioactive chemicals (Fig. 1), the equipment needed for 

each procedure vary. Supercritical fluid, high 

hydrostatic pressure, ultrasonic, and pulsed electric 

fields are few of the cutting-edge technologies that 

represent swiftly outstanding traditional techniques. 

Higher yields and extraction rates could be achieved 

with creative and integrated innovative technologies. 

During the process of phytochemical extraction using 

different inorganic solvents, we need less energy that 

shields the loss of final extracts   (Wang et al., 2020a). 

People have used plants as a therapy and treatment for 

various medical conditions since ancient times. 

Ayurvedic medicine is well-known due to its many 

benefits and low dangers (Khan et al., 2021). 
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Fig. 1: Extraction of plants, synthesis of green NPs, and their effects against MDR bacteria 

 

2.2. Bioactive phyto-components extraction 

methods 

2.2.1. Traditional extraction methods 

     Extraction of bioactive compounds from plants can 

be achieved through advanced traditional methods, 

including: 

Solvent extraction/ Liquid-liquid extraction 

     The process of separating two liquids that mix well 

together is known as solvent extraction. There are two 

different phases: an organic and an aqueous phase. For 

extraction, the analyte has to be dissolved in the 

organic phase.  

     For extraction, the plant or other materials to be 

treated; together with both of the aqueous and organic 

phases is held in a separating funnel, where shaking 

causes the liquid to divide into two layers. During 

liquid-liquid extraction, the analyte is separated 

between the two insoluble liquids depending on the 

soluble state in each solvent (Fig. 2) (Wells, 2003). 

Solid-phase extraction 

    According to the chemical and physical properties 

of the compound in mixture, separation, purification 

and identification of lead molecules is carried out 

using the solid phase extraction process. This process 

is a solid- liquid extractive method, where the mixture 

of compounds is dissolved or suspended in the broth 

medium.  The chemical component is eventually 

eluted and recovered after being bound to the solid 

sorbent. It is essential to gather as much analytical 

solute as possible in a consistent and yield-maximizing 

manner for solid-phase extraction to be successful 

(Murakami et al., 2020). 
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Fig. 2: Image of Soxhlet and pulsed electric field extraction processes 

 

Solid-phase micro-extraction 

     Solid-phase micro-extraction (SPME) is a simple 

method that involves applying a sample to solid phase 

dispersion in a small quantity of extracting phase for a 

specified interval of time. According to Merkle et al., 

(2015), after being transported for gas or high-

performance liquid chromatography (HPLC), the 

treated particles or sorbents are subjected to a sample 

or a target material for a particular period of time. A 

wide range of foods contain trace amounts of bioactive 

chemicals, which can be evaluated using SPME. 

2.2.2. Advanced extraction methods 

Ultrasound-assisted extraction (UAE) 

     Generating high-frequency and high-intensity 

sound waves to analyse their ability to interact with 

different materials is one of the most innovative 

technologies used in the United Arab Emirates. Due to 

the fact that it doesn't require complex instrument, 

UAE is a fairly priced technology that may be useful.  

Both local and large-scale applications are possible 

with this technique (Dai and Mumper, 2010). 

According to Jambrak et al., (2008), ultrasound 

enhances the extraction yield by releasing notable 

amounts of particular chemicals through enhancing 

mass transfer and disrupting the cellular matrix. UAE 

involves ultrasonic effects of acoustic cavitations. 

Diffusion of solutes from a solid phase to a solvent 

occurs rapidly due to acceleration and vibration of 

both solid and liquid particles caused by ultrasonic 

action (Fig. 3) (Cares et al., 2010). The ultrasonic 

extraction efficiency may be attributed to several 

techniques, including but not limited to cell rupture, 

more effective permeability, enhanced swelling, 

capillary effect, and hydration mechanism (Huaneng et 

al., 2007). 
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Fig. 3: Image of ultrasound assisted and microwave based extractions methodology 

 

When the ultrasound intensity in a liquid is raised, the 

molecular structure breaks down and bubbles are 

formed, because the intramolecular forces can no 

longer hold the molecular structure together. This 

process is known as cavitation (Baig et al., 2010). 

When bubbles burst, the biological membranes are 

disrupted, which makes it easier for substances that 

can be extracted to be released, increases the amount 

of solvent that can enter the cellular components, and 

enhances the mass transfer (Metherel et al., 2009). 

Microwave-assisted extraction (MAE) 

    According to several studies conducted by Hayat et 

al., (2009), the technology of microwave-assisted 

extraction (MAE) is useful in extracting valuable 

compounds from plant materials. Additionally, it 

functions on both small and large scales and is quite 

adaptable (i.e., in a laboratory or an industrial setting) 

(Cravotto et al., 2008). MAE is simple-to-utilize, 

affordable, and an ecofriendly method for extracting 

the biologically active substances from various plant 

sources (Hemwimon et al., 2007). In microwave 

absorption, electromagnetic energy of the microwaves 

is converted into thermal energy by the material. 

Commercial microwaves typically operate at a 

frequency of 2450 MHz (2.45 GHz) with an energy 

output of 600-700 W (Jain et al., 2009a). In a previous 

study, Abu-Samra et al., (1975) made the first 

reference to using microwave radiation. In the 

laboratory, biological samples are prepared for metal 

trace analysis using an ordinary microwave oven. 

Supercritical fluid extraction (SFE) 

     Supercritical fluid extraction (SFE) is among the 

most innovative techniques. It allows for extracting 

certain compounds from plants at room temperature 

without causing the material to become thermally 

denatured. SFE is a well-established solvent extraction 
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method; however, as it requires expensive and 

complex high-pressure apparatus and technology, its 

commercial application is reluctant to take off 

(Tonthubthimthong et al., 2001). Due to its critical 

temperature of 304 
°
k, which makes it suitable for 

extracting the heat-labile chemicals, CO2 is often the 

most preferred solvent in SFE. Furthermore, CO2 is a 

safe solvent that doesn't burn or explode, cheap, 

noncorrosive, odorless, colorless, and clean. 

Furthermore, SFE leaves no solvent residue in the 

 

 

 

product, non-toxic, and widely recognized as a 

harmless ingredient in food and medicine. Moreover, 

CO2 can be easily removed from the extracted oil by 

simply expanding it. Carbon dioxide has a low surface 

tension and viscosity and high diffusivity, which 

makes it attractive as a supercritical solvent (Handa, 

2008). According to Brunner et al., (2005), when a 

fluid is heated or pressed above its critical temperature 

and critical pressure (Pc), it attains its critical state 

(Tc) (Fig. 4). 

 

 

 

Fig. 4: Advance extraction methods as super critical fluid and enzyme assisted extraction processes 

 

Enzyme-assisted extraction 

     Effective application of enzymes in extraction is 

another innovative technique. For extracting 

biomolecules from plants, enzyme-assisted extraction 

is becoming increasingly popular as a potential 

replacement for conventional solvent extraction 

methods, due to its safety, efficacy, sustainability, and 

ecological compatibility. The effectiveness of enzyme-

based extraction depends on the enzymes' capacity to 
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conduct reactions under mild conditions while 

retaining biological potencies of the bioactive 

chemicals. These characteristics include precise 

specificity, region-selectivity, and adaptability (Puri et 

al., 2012). The fundamental idea behind enzyme-

assisted extraction is to hydrolyze plants cell wall 

utilizing an enzyme as a catalyst under the best 

possible experimental conditions, thus breaking them 

down and releasing the internal components. The plant 

cell wall attaches itself to the enzyme's active site, as a 

result, the enzyme conforms itself to the substrate's 

active site, and increases the period of contact between 

them. When an enzyme's shape changes, the plant cell 

wall's connections become broken, thus releasing the 

enzyme's active ingredients (Sheldon and van Pelt, 

2013). Enzyme-assisted extraction usually involves 

carbohydrates hydrolyzing enzymes (Dehghan-Shoar 

et al., 2011). 

Pulsed electric field (PEF) extraction 

      Electric field strengths (EFS) used in Pulsed 

electric field (PEF) extraction process range from 20-

80 kV/ cm in continuous mode extraction and 100-300 

V/cm in batch mode. There are two areas where 

several theories agree on the potentiality of PEF 

mechanism. The two processes that occur in the 

biological cell membrane are electroporation and 

acceleration of chemical reactions involving different 

substances to improve solvent solubility (Xi et al., 

2021). To improve permeability of the cell 

membranes, a process called electro-permeabilization 

or electroporation, uses an external electrical force 

(Panja, 2018). A high-voltage electric field is applied 

between the electrodes and the extracted materials, 

such as plants. Hydrophilic gaps are created, leading to 

rupture of cell membrane and release of protein 

channels. As the plant sample is subjected to an 

electric field; defined as a force per unit charge, high-

voltage electrical pulses are applied across the 

electrodes. When structural integrity of the membrane 

is compromised, the plant material is released 

(Redondo et al., 2018). 

Soxhlet extraction 

     In the Soxhlet system, the plant materials are first 

placed in thimble part of the apparatus and then filled 

with fresh solvent from a distillation flask. A siphon 

draws the solution from the thimble-holder and returns 

it to the distillation flask, transferring the solutes that 

have been extracted into the main liquid when the 

liquid level exceeds it. Then, the solute is separated 

from the solvent by using distillation in a solvent flask. 

Fresh solvent returns to the plant solid bed while the 

solute remains in the flask. Until total extraction is 

accomplished, the process is repeated several times. 

The solvents that are generally used in the extraction 

method are ethanol, methanol, and water. The powder 

form of plant parts is extracted with a proper amount 

of solvents at 80 
°
C for 8 h (Wang and Weller, 2006).  

 3. Plant-based nanoparticles  

     Nanotechnology is utilized to mitigate and 

suppresses multi-drug resistant (MDR) bacteria. NPs 

represent meticulously engineered structures with 

dimensions ranging from 1-100 nm. They are pivotal 

in many medical applications, encompassing medical 

instrumentation, therapeutic agents, and drug delivery 

systems (Horikoshi and Sarpone, 2013). Phyto-

constituents produced by secondary metabolism have 

come from various plant parts such as flowers, shoots, 

bark, stems, roots, and seeds, which are easily 

increased and influenced by both external signals and 

environmental factors (Kuppusamy et al., 2016). 

Several previous studies showed that phyto-extracts 

could be used for safe production of NPs, due to the 

presence of various beneficial secondary metabolites, 

including saponins, tannins, flavonoids, alkaloids, 

steroids, terpenes, phenolic compounds, and 

coenzymes. For this reason, phyto-extracts act as both 

reducing and stabilizing agents during the production 

of NPs (Kuppusamy et al., 2016). NPs are mainly 

categorized into several kinds; mainly carbon-based, 

metal-based, ceramics, semiconductor, polymeric, and 

lipid-based. In this category, polymeric and metal NPs 

are commonly employed due to their antibacterial 

activities in the field of nanomedicine (Kamaly   et al., 

2016). Polymeric and metal NPs are rapidly 

synthesized by using phytochemicals (Pal et al., 2019). 
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Utilizing polymeric NPs produced by phytochemicals 

presents a promising approach for combating MDR 

 

 

bacteria. Examples of several polymeric NPs and their 

antibacterial potential are summarized in Table (1). 

 

 

Table 1: Different types of polymers found in various plant leaves and their effects against different bacteria 

 

 

4. Plant synthesized metal nanoparticles  

     Metal NPs are nanomaterials produced from pure 

metals such as Gold (au), copper (cu), Silver (Ag), 

Palladium (Pd), Iron (Fe), Zinc (Zn), Platinum (pt), 

and Titanium (Ti),  or their compounds form like 

Copper oxide (Cuo), Iron oxide  (Fe3O4), Titanium 

dioxide (TiO2), and Zinc oxide (Zno), which are 

characterized by size dimensions ranging from 1- 100 

nm. MNPs exhibit distinct physical and chemical 

attributes that originate from their bulk metal 

counterparts; primarily attributed to their reduced size 

and heightened surface area-to-volume ratio (Khan et 

al., 2019). Production of AgNPs using Aloe vera 

extract has demonstrated strong antibacterial activity 

against K. pneumonia (Burange et al., 2021). 

Meanwhile, production of AgNPs using Cinnamomum 

tamala leaf extract has expressed varying minimum 

inhibition concentration (MIC) values for Gram-

negative bacteria such as E. coli and K. pneumoniae 

displaying 12.5 µg/ ml, and Gram-positive bacteria 

such as Staphylococcus aureus expressing 10 µg/ ml. 

Synthesis of AgNPs from Cotyledon orbiculate 

exhibited the highest antibacterial action against P. 

aeruginosa (Kambale et al., 2020). AgNPs synthesized 

from Mespilus germanica extract have antibacterial, 

Polymer 

 
Plant Parts 

Phytochemicals 

 

Antibacterial activity 

 

References 

 

Chitosan 

 

Leaf Cardamom 

essential oil 

 

Methicillin resistant 

Staphylococcus aureus, 

Extended spectrum β-

lactamase, Escherichia 

coli 

 

Jamil et al., (2016) 

Chitosan Leaf Eucalyptus globulus 

leaf extract 

Multidrug resistant 

Acinetobacter 

baumanni 

El-Naggar et al., 

(2022) 

Chitosan/ Hydroxypropyl 

methylcellulose (HPMC) 

Leaf Schinopsis brasiliensis 

leaf extract 

Extended spectrum β-

lactamase, Klebsiella 

pneumoniae 

caarbapenemase 

 

 

De Oliveira et al., 

(2020) 

Polylactic acid(PLA)/ 

Polyvinyl alcohol(PVA) 

Leaf Pistacia lentiscus var. 

chia essential oil 

Bacillus subtilis Vrouvaki et al., 

(2020) 
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antibiofilm, and anti-quorum sensing activities against 

the MDR bacteria such as K. pneumoniae. Silver NPs 

have been biosynthesized using Stenocereus 

queretaronesis, which exhibited a notable antibacterial 

activity against methicillin-resistant Staphylococcus 

aureus (MRSA). AgNPs produced using Syzegium 

cumin leaf extract have shown outstanding 

antibacterial potentials against Staphylococcus aureus 

strain resistance to methicillin and vancomycin. The 

remaining phytobased NPs and their antibacterial 

activity are mentioned in Table (2). 

5. Types of plant-synthesized metal 

nanoparticles  

5.1. Gold nanoparticles  

     Plant, fungi, bacteria, actinomycetes, algae, and 

other microorganisms can all be used in green 

synthesis of AuNPs, which is an economical, 

biocompatible, and environmentally beneficial method 

(Kumari et al., 2023). Many physical and chemical 

methods have limited use in AuNPs production and 

biomedical application due to their high energy 

consumption and production of vicious by-products 

(Rudrappa et al., 2023). Throughout the duration of 

green synthesis, a variety of phyto-compounds, 

including phenolics, terpenoids, flavonoids, and 

alkaloids, help to reduce and stabilize the metal ions 

(Khanna et al., 2019). Green synthesis of AuNPs 

produces materials with unique chemical and physical 

properties such as high surface area-to-volume ratio 

compared to bulk materials of similar composition. 

These NPs have a wide range of applications, 

including drug delivery, catalysis, antibacterial, 

antimicrobial, and anticancer (Sathishkumar et al., 

2016). The morphology of AuNPs such as size and 

form that is important in variety of applications can be 

controlled using a green strategy (Kumari et al., 2023). 

Plant extract used as a reducing and stabilizing agent is 

combined with Au metal precursor solution to create 

AuNPs. There are 3 steps of AuNPs synthesis; mainly 

reduction, nucleation, and growth of the crystal nuclei 

(Ahmad et al., 2021). The precursor is decreased 

during the first phase; known as reduction, while the 

number of Au atoms increases steadily in the second 

phase (nucleation) (Wu et al., 2022). When the 

concentration of Au atoms falls below the critical 

super saturation level, Au atoms begin to form crystal 

nuclei. However, if the concentration has remained 

below saturation, Au atoms do not form crystal nuclei, 

resulting in the formation of pure AuNPs (Balkrishna 

et al., 2024) (Fig.  2). 

5.2. Nano-silver  

     Each approach to make NPs has benefits as well as 

drawbacks. Biological synthesis is environmentally 

sustainable, cheaper, and can be readily scaled up for 

enormous scale production of NPs (Ahmed et al., 

2017). The biological approach is cost effective, 

cleaner, nontoxic, biocompatible, and frequently 

single-step method that uses biomolecules such as 

proteins, enzymes, and DNAs found in algae, fungi, 

microbes, and plants as well as secondary metabolites 

(i.e., terpenes, phenolics, carbohydrates, flavonoids, 

etc.) as reducing, capping, and stabilizing agents (Rana 

et al., 2020). A unique nucleation site is provided a by 

biomolecule-driven synthesis (i.e., Proteins, DNA, and 

enzymes) during synthesis of NPs, leading to the 

formation of uniformly sized particles with a broad 

range of biomedical applications, which are selective 

and sensitive to bio-molecular targets (He et al., 2022). 

However, these methods are highly sensitive to 

external factors such as temperature (Ocsoy et al., 

2018). The size of manufactured AgNPs is additionally 

influenced by the molar ratio of silver salt and 

biomolecules. Both protein and DNA-mediated AgNPs 

have expressed sensing applications on spike proteins 

and demonstrated strong antibacterial activity (Poudel 

et al., 2022). In the field of nanotechnology, the bio-

production of functional NPs that is both nontoxic and 

biocompatible is essential (Nasrollahzadeh et al., 

2019). Various plant secondary metabolites function as 

agents that reduce, stabilize, and cap the NPs. The 

form, size, and production of AgNPs are determined 

by the distinct classes of secondary metabolites that 

each plant produces based on its capacity to donate 

electrons for the reduction of Ag
+
 ions to Ag

0
 (Wink, 

2020). 
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Table 2: List of plant based nanoparticles, plant sources, and their antibacterial potentials   

 

When creating NPs, reaction time has an essential role 

as it enables the salt and the reducing complex 

components in the extract to interact properly 

(Barzinjy et al., 2023). Plants having higher levels of 

phytochemicals or secondary metabolites are better for 

reducing a salt (Sytar et al., 2018), while plants that 

have less reduced chemicals, on the other hand, take 

longer time to reduce a salt (Acosta-Motos et al., 

2017). A number of variables, including the reaction 

mixture's acidity or basicity, temperature, the plant 

extract's reducing power, light intensity, enzymes, and 

secondary metabolites, can affect how long a reaction 

Plants name Nanoparticles  

used 

Plant parts  

used 

Antimicrobial activity  

against 

References 

Justicia Adhatoda L. AgNPs Leaves P. aeruginosa Bose and Chatterjee, 

(2015) 

Carica papaya L. AgNPs Fruit and leaves E. coli and P. aeruginosa Jain et al., (2009b) 

Artemisia nilagirica AgNPs Leaves Staphylococcus aureus, B. subtills, E. 

coli 

Vijayakumar et al., 

(2013) 

Trianthema decandra AgNPs Roots P. aeruginosa and E. coli Geethalakshmi and 

Sarad., (2010) 

Emblica officinalis AgNPs Fruit Staphylococcus, B. subtilis, E. coli, K. 

pneumonia 

Ramesh et al., (2015) 

Cleome viscosa  AgNPs Fruit Staphylococcus aureus, B. subtilis, E. 

coli, K. pneumonia 

Lakshmanan et al., 

(2018) 

Anabaena spiroides AuNPs Leaves MDR (Klebsiella oxytoca, 

Streptococcus pyogeres, Methicillin-

resistant Staphylococcus aureus) 

Mandhata et al., 

(2021) 

Punica granatum AuNPs Leaves Methicillin-resistant  Staphylococcus 

aureus 

Hussein et al., (2021) 

Moringa oleifera FeNPs Leaves E. coli, S. typhae,    Staphylococcus  

aureus 

Aisida et al., (2020) 

Eichhornia crassipe FeNPs Leaves P. flurescens and  Staphylococcus  

aureus 

Jagathesan and Rajiv, 

(2018) 

Sageretia thea FeNPs Leaves E. coli, B. subtilis, P. aeruginosa, K. 

pneumonia,  Staphylococcus 

epidermidis 

Khalil et al., (2017) 

Punica grantum FeNPs Leaves P. aeruginosa Khan et al., (2017) 

Cynometra ramiflora FeNPs Leaves S. epidermidis, E. coli Groiss et al., (2017) 

Lantana camara FeNPs Leaves K. Pneumoniae, Pseudomonas and 

Staphylococcus 

Singh et al., (2020) 

Skimmia laureola FeNPs Leaves Ralstonia solanaceae Alam et al., (2019) 

Padina boryana PdNPs Leaves Staphylococcus aureus, E. fergusonii  

P. aeruginosa 

Sonbol et al., (2021) 

Aloe vera TeNPs Leaves Methicillin-resistant Staphylococcus 

aureus, Multidrug resistant (E. coli) 

 Medina-Cruz et al., 

(2021) 

Syzygium cumini , 

Prunus africana 

ZnONPs Flower Carbpenem resistant  E. coli,  K.  

pneumoniae, Methicillin-resistant 

Staphylococcus aureus 

Ssekatawa et al., 

(2022) 

Acacia nilotica,  

Bougainvillea  

ZnONPs Flower  K.  pneumoniae carbapenemase, 

Methicillin-resistant E .coli 

Rasha et al., (2021) 

Phyllanthus reticulatus CuONPs Leaf extract E. coli Potbhare et al., (2019) 
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takes (Lade and Patli, 2017). By varying the 

proportion and ratio of plant extract and precursor 

utilized, AgNPs size and shape can be designed. 

AgNPs biosynthesis through using a capping agent as 

ascorbic acid and a reducing agent as a cylindrical 

plant extract, gives a quasi-spherical shape (Omran et 

al., 2021). According to their findings, increasing the 

concentration of AgNO3 (from 0.5 to 0.9 mM) has 

made a bigger particle size (32.7 to 39.9 nm), which 

has been obtained by maintaining ascorbic acid and the 

extract concentration at similar levels (Ansari et al., 

2023). Additionally, they discovered a narrower 

absorption peak at 0.5 mM AgNO3 indicating a 

smaller size distribution (Htwe et al., 2019). Aqueous 

extracts from Piper betle L. leaf were used in creating 

AgNPs and the most favorable circumstances were 

obtained by experimenting using different 

concentrations of AgNO3 (1, 2, 3, and 4 mM) and 

crude extract dilution ratios of 1:2, 1:4, and 1:8 

(Nguyen et al., 2021). According to their findings, the 

best outcomes were obtained with 2 mM of AgNO3 

and a 1:4 extract dilution ratio. As the AgNO3 

concentration has increased, larger NPs are produced 

by shifting the UV-vis peak to higher wavelengths 

(Khan et al., 2020). AgNPs’ application to enhance 

soil quality, pesticide function, and plant development 

could considerably assist the agricultural sector, as 

current estimates take into account the requirement for 

major augmentation in agricultural productivity for the 

coming thirty years (Ansari et al., 2023). 

5.3. Copper nanoparticles  

     The electrical, mechanical, magnetic, resistance, 

conductivity, and thermal properties of CuNPs have 

drawn attention of the general public (Kute et al., 

2022). These properties have led to several 

applications such as heat transfer system, water 

treatment, and antimicrobial coating for surgical 

instruments (Manjula et al., 2022). To attain the 

required copper concentration, the herb extract has 

been combined with the copper precursor, where the 

literature has indicated a wide variety of precursor 

concentrations (Antonio-Pérez et al., 2023). For 

example, concentrations of 10-250 mM CuCl2, 0.1-100 

mM CuNO3, 3-500 mM Cu(CH3COO)2, and 1-1000 

mM CuSO4 have all been examined (Antonio-Pérez et 

al., 2023). Fourier-transform infrared spectroscopy 

(FTIR) investigation revealed that unlike chemical 

synthesis, reduction reaction of metal ions such as 

copper to NPs is independent of a single biomolecule, 

which raised several questions about the involvement 

of plant extracts in the production of CuNPs (Husen 

and Iqbal, 2019). Depending on makeup of the chosen 

plants, different biomolecules such as alkaloids, 

phenols, organic acids, and proteins have been 

involved in green synthesis of CuNPs (Basumatary et 

al., 2024). A study on the phytochemical analysis of an 

extract of Ageratum houstonianum leaves was carried 

out in 2020 by Chandraker et al., (2020), where FTIR 

studies indicated that this group of chemicals plays a 

major role in CuNPs synthesis. Except for a few 

instances, including those of CuNPs made from leaf 

extracts of Hagenia abyssinica, which have produced 

hexagonal, spherical, prismatic morphologies, and 

triangular cylindrical shapes; however, the most 

common reported morphology of CuNPs is spherical 

(Antonio-Pérez et al., 2023). In particular, CuNPs 

synthesized from Falcaria vulgaris extracts have 

demonstrated a variety of functions, including 

antioxidant, antifungal, and antibacterial activity, and 

have the ability to cure cutaneous wounds without 

causing cytotoxicity (Hurtado et al., 2022). One of 

their main benefits is the fact that the precursors of 

CuNPs produced by green synthesis have made them 

inexpensive, non-toxic to humans, and easily tuned 

(Yazdanian et al., 2022). These CuNPs can be 

employed as antioxidants, anticancer, antimicrobial, 

and antibacterial agents, due to their ability to interact 

with various biological systems (Maliki et al., 2022). 

5.4. Nano-platinum  

      Numerous primary and secondary metabolites 

found in plant extracts may operate as organic 

reducing and capping agents (Abada et al., 2023). 

Biosynthesis of MNPs from a plant extract is a quick 

and easy procedure that involves combining the metal 

ions solution and plant extract at the ideal pH and 

temperature (Prabakaran and Rajan, 2021). The 
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morphology, average size, and surface charge of 

MNPs should be controlled by optimizing a number of 

variables, including pH, temperature, and contact 

duration (Wang et al., 2020b). Four main steps make 

up the mechanism of PtNPs green synthesis: (i) bio-

reduction; the first activation step that reduces the 

metal ions to their zero-oxidation states (Fahmy et al., 

2020), (ii) agglutination of the small NPs into larger 

ones making more stable particles according to 

thermodynamics (Yeap et al., 2017),  (iii) termination, 

which involves stabilizing and capping the MNPs to 

form NPs with a variety of morphologies and average 

sizes (Fahmy et al., 2020), and (iv) the last step, 

purification and washing of the MNPs typically by 

centrifugation (Fahmy et al., 2024). Furthermore, 

several analytical techniques, including FTIR,  

scanning electron microscopy (SEM), UV/Vis 

spectrophotometry, powder X-ray diffraction (XRD), 

dynamic light scattering (DLS), and transmission 

electron microscopy (TEM), have been used to 

characterize the fabricated MNPs in general and PtNPs 

in particular (Mitić et al., 2017). Plant extracts have 

long been regarded as safe, environmentally benign, 

and biocompatible method for producing green PtNPs. 

The present risky and multi-step synthetic processes 

have been replaced by photosynthesis of PtNPs 

(Dheyab et al., 2024). Applying green strategies 

utilizing plants and plant extracts is the subject of few 

investigations. In one investigation, Pt (IV) ions have 

been incubated with Azadirachta indica leaf extract for 

1 h at 100 
°
C. The reducing and capping agents are 

represented by the terpenoids that exist in the leaves of 

A. indica (Dutt et al., 2023). To increase the PtNPs 

monodispersity, they have been sonicated for 30 min. 

(Thirumurugan et al., 2016). To biosynthesize 

spherical PtNPs, Yang et al., (2017) employed Mentha 

piperita (peppermint) leaf extract, and performed the 

bio-reduction at 60 
°
C for 90 min. Tahir et al.,  (2017) 

used Taraxacum laevigatum plant extract to create a 

simple process for the manufacture of spherical PtNPs. 

For 10 min., bioreduction was conducted at 90 
°
C. 

Ultimately, gum extract from Prudus x yedoensis has 

been used to create environmentally beneficial PtNPs. 

The gum extract concentrations of 7 % and 8 % have 

been used in the reaction conditions that are tuned at 

pH 8 for 30 min. (Velmurugan et al., 2016). 

6. Challenges in design of nanoparticles 

6.1. Challenges in designing nanoparticles from 

plants  

     Numerous studies have concentrated on locally 

accessible plants, where a wide variety of plant 

materials are available for eco-friendly synthesis of 

NPs (Behzad et al., 2021). Utilizing the surrounding 

plants to maximum extent has also been the aim of the 

green production of CuNPs, AuNPs, NZVI, and Iron 

oxide NPs (Ruttkay-Nedecky et al., 2017). Although 

pepper mint is native to central and west Asia, 

fenugreek is used in the synthesis of AuNPs in widely 

grows of China and along the eastern Mediterranean 

Coast (Sharma et al., 2023). Although other materials 

such as psoralen can also be used to create Fe2O3NPs; 

however, these materials are primarily found in Sri 

Lanka, India, and Myanmar (Ying et al., 2022). The 

Ardean blackberry (Rubus glaucus Benth), which is 

mainly found in Colombia, Ecuador, and the Andes of 

central and south America is used in the synthesis of 

CuNPs (Kumar et al., 2017). Therefore, it is crucial to 

look into the possibilities of utilizing local plants to 

produce nano-scaled metals on a large range when 

choosing synthetic materials (Mitchell et al., 2021). It 

is also challenging to use raw materials for production 

of NPs when one is short on time. Cotton leaves 

during the flowering season (Altabbaa et al., 2023) or 

Sargassum fusiforme; whose growing season varies 

greatly from region to region, must provide the 

ingredients needed to green synthesize AgNPs 

(Kamaraj et al., 2023). Tea extract is used to produce 

nano-scale zero valent Iron (NZVI) directly from pure 

tea polyphenols, but the extraction and purification 

processes are prohibitively expensive (Wang et al., 

2017a). Carboxymethyl cellulose and cellulase methyl 

carboxylate are two ecofriendly plant products used 

for creating PdNPs; however, although cellulose is an 

ecofriendly raw material, it requires a 

carboxymethylation process, which uses materials 

from other plants such as sago pulp (Oyewo et al., 
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2020). Reagents such as sodium hydroxide and sodium 

mono chloroacetate are used to improve NPs synthesis 

process, but they may not be compatible with green 

synthesis (Saputra et al., 2014). Despite these 

challenges, cellulase remains an ecofriendly alternative 

to synthesis PdNPs (Kamel and Khattab, 2021). 

6.2. Challenges in designing synthetic nanoparticles 

     The main issues with NPs synthesis processes 

involve the need for additional industrial chemical 

reagents, excessive energy consumption, and lengthy 

reaction time (Sheldon, 2012). AgNPS have been 

made from the leaf and root extract of Ferula persica 

in a 3 h process at 600 
°
C, whereas CuNPs can be 

synthesized using guava fruit extract in 800 
°
C water 

bath (Wang et al., 2017b). CuONPs can be synthesized 

using ultrasonic stirring for 2 h at 80 
°
C, which is 

preferable than the chemical synthesis method 

(Sharma et al., 2023). This means that some green 

synthesis processes must be run for extended periods 

of times at very high temperatures and consume a lot 

of energy that may be harmful to the atmosphere 

(Shafey, 2020). Despite using ecofriendly raw 

materials, the process doesn't always adhere to the idea 

of "green synthesis (González-Ballesteros and 

Rodriguez, 2020). The brown algae Cystoseira 

baccata, which requires a lot of energy, is used to 

produce AuNPs at 24 
°
C, and it is also advisable to 

store the plant extract at low temperatures (Sampath et 

al., 2022). In order to function at this low temperature 

energy, intensive equipment such as freezers are 

needed. It is, therefore, optimal to produce nano-sized 

metals at room temperature as this simplifies the 

synthesis process and conserves energy (Bharali et al., 

2023). The right time to react should be brief because 

the production costs and efficiency are related. 

Microwave radiation is necessary to synthesize CuNPS 

using coffee powder extract. After 3 h of boiling, it is 

dried for 4-5 h in a hot air oven (Ying et al., 2022). 

However, centrifugation, continuous heating at 60 
°
C 

for 1 h, stirring for an extra 30 min., and heating for an 

additional hour are all are needed conditions to create 

nano-sized metal oxides using the sol-gel method 

(Aragaw et al., 2021). MNPs are oxidized readily in 

the air. The disruption of 3-D symmetry and high 

surface area-to-volume ratio can significantly affect 

NPs surface coordination. For this reason, chemically 

inert metals can be oxidized even under mild stress 

conditions. Therefore, synthesis under inert conditions 

is described in some published reports to protect 

MNPs from oxidizing. The difficulty of identifying a 

precise chemical reaction to describe the synthesis 

process and lack of knowledge about the biosynthesis 

mechanism are two other major barriers of green 

biosynthesis (Santhosh et al., 2022). Pomegranate 

extract (Punica granatum L.) peels, for example, can 

be used as an end capping agent during the green 

synthesis of ZnO/ Cu2O/ CuO/ Cu nanostructures. 

AgNPs can be synthesized using root extract of 

Zingiber officinale and Sagenetia thea (Osbeck) acting 

as occlusive and reducing agents, which can also be 

used as chelating agents during the synthesis of 

Fe2O3NPs (Javed et al., 2023). 

6.3. Nanoparticles quality  

     The qualities of green synthesized NPs produced by 

various plant extracts are inadequate and their sizes 

and forms are highly varied. Significant variations in 

particles size are reported in the current study, which 

means that green technology is not appropriate for 

large-scale production of NPs and that managing 

particles size throughout the production process is 

significantly difficult. Nano-scale zero valent iron NPs 

(NZVI-NPs) made from grape seeds have ranged in 

particle size from 63 to 381 nm (Gao, 2016), whereas 

AgNPs made from Nigella arvensis leaves  have 

ranged in size from 5 to 100 nm (Chahardoli et al., 

2018). According to SEM analysis, the particle sizes of 

AuNPs synthesized from Pistacia integerrima gall, 

aqueous Elaise guineensis (oil palm), and Galaxaura 

elongate extract varied also significantly, having sizes 

that ranged from 13 to 97 nm, 2 to 100 nm, and 20 to 

200 nm, respectively (Abdel-Raouf et al., 2017).  

7. Challenges in use of nanoparticles as drug 

delivery systems against MDR  
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        Based on advanced technology, drug delivery 

systems (DDS) prepare and store drug molecules in 

forms appropriate for therapy, including tablets, 

liquids, and/or other formulations. These systems 

expedite the delivery of medications to the precise 

intended site within the body, and optimize the 

therapeutic efficacy while minimizing the risk of off-

target accumulation (Vargason et al., 2021). Due to 

their enhanced systemic circulations and abilities to 

regulate the drug's pharmacological impact, DDS have 

been successfully used in treatment of various illnesses 

and enhancement of overall health. The concept of 

controlled NPs release has emerged, as advances in 

pharmacology and pharmacokinetics highlighted the 

importance of medications release timing in achieving 

therapeutic success (Verma and Garg, 2001). As in this 

emerging science era of nanotechnology; it is 

considered as a good supplier/ provider/ trader of 

particles ranging in size from 1 to 100 nm that are 

otherwise known as NPs (Griffin, 2019). The most 

commonly used NPs are usually biologically processed 

and have a much better antibacterial effects than the 

chemically synthesized NPs, and they are specifically 

used against MDR (Alavi and Raj, 2019). The 

potential breakthrough to combat antibiotic-resistant 

microorganisms comes from advanced 

nanotechnology. In the process of causing bacterial 

cell death, NPs attach to the bacterial surfaces and 

break down their cell walls (Wang et al., 2017b). It is 

currently determined that NPs size smaller than 20 nm 

may enter the bacterial cells and break down their cell 

walls, disrupting their metabolic processes, and 

eventually causing death of the bacteria (Arakha et al.,  

2015). Due to its high therapeutic index and efficacy 

against microorganisms, nanotechnology represents a 

viable therapeutic approach (Hussain et al., 2018). 

Many bacterial infections may be effectively treated 

using NPs; particularly when MDR pathogens are 

involved. When employed alone or combined with 

antibiotics, NPs have strong synergistic effects. 

Promising future approaches include nanomaterials 

that can distribute and release drugs more effectively 

and react to various endogenous and external stimuli to 

kill the pathogens (Qiu et al., 2018). Enterobacter sp. 

and P. aeruginosa are two bacterial spp. that AgNPs 

have been shown to effectively combat them in urinary 

tract infections (UTIs) (Jacob Inbaneson et al., 2011). 

Consequently, nano-composites could be useful in 

many biological applications. Through utilizing a 

unique bioactive nanostructure with silica-titania 

sieves acting as carriers, a new antibacterial agent 

called izohidrafural has been employed. These NPs 

effectively inhibit the growth of two uropathogens; 

mainly K. pneumoniae and Proteus mirabilis (Al 

Tameemi et al., 2017). The leaves of Berberis aristata 

have been utilized to produce ZnONPs, demonstrating 

significant antibacterial efficacy against clinical 

isolates of UTIs (Chandra et al., 2019). Candida 

albicans has been effectively targeted using AgNPs 

derived from Mentha piperita ethanol extract, which 

proved to be more effective (Robles-Martínez et al., 

2020). 

8. Phyto-based nanoparticles alone or in 

combination with antibiotics acting against 

MDR pathogens  

     Previous studies expressed that the association of 

phytochemical-based NPs with antibiotics showed a 

better impressive results than other forms of phyto-

based NPs and antibiotics. Synthesis of phyto-based 

(Fagonia indica) AgNPs that have been combined 

with the antibiotic Ciprofloxacin resulted in expression 

of remarkable antibacterial activity against E. coli, 

Citobacter amaonticus, and Salmonella spp. However, 

it is noteworthy to recognize the synergetic interaction 

between AgNPs and antibiotics (Adil et al., 2019). The 

Zea mays leaf-based AgNPs combined with two 

antibiotics such as Kanamycin and Rifampicin, 

displayed antibacterial activity against 5 strains of 

bacteria; mainly Bacillus aureus, Listeria 

monocytogenes, Staphylococcus aureus, E. coli, and S. 

typhimurium (Patra and Baek, 2017). Combining 

phyto-based MNPs with antibiotics seems as a 

promising approach to fighting MDR bacteria by 

reducing their resistance and harmful effects 

(Ruddaraju et al., 2020). During the production of 

AgNPs, choosing eco-friendly methods of green 

synthesis and considering the use of suitable solvents 
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and chemicals increases the potential of AgNPs to 

combat microorganisms, thus acting as effective 

antimicrobial agents (Kaweeteerawat et al., 2015). A 

better activity is obtained when the antibiotic 

Lincomycin has been combined with AUNPs produced 

using leave extract of Piper guineas (Shittu et al., 

2017).  

Conclusion  

     Uprising of MDR bacteria has made treating the 

infectious diseases more difficult by reducing the 

efficacy of antibiotics and affecting treatment failure 

rates as well.  Phytochemicals are excellent key 

players in altering the drug resistance of bacteria by 

killing bacteria or interfering with their pathogenicity. 

Notably, many plants exhibit inhibitory actions against 

efflux pumps. The use of edible plants to synthesize 

NPs is growing in popularity. Although there are 

multiple challenges associated with the design, 

selection of type, challenges in delivery system, 

maintenance of the quality of plant based NPs; 

however, we found that they have the potential to 

affect the MDR pathogens both alone and in 

combination with antibiotics. Propagation of the 

bacterial class-specific tolerance often requires several 

genetic elements, including plasmids, transposons, 

insertion sequences, and integrative conjugative 

elements. In addition to mutations, bacteria carrying 

resistance genes are more likely to proliferate and 

endure in unfamiliar environments. The potential of 

plant-derived NPs to suppress infections is being 

evaluated, which is essential in the fight against MDR 

illnesses. It is important to analyze the plant derived 

NPs composition to facilitate the effective utilization 

of medicinal plant extracts in future works. However, 

the complexity of therapeutic plant extracts presents a 

challenge; particularly in addressing the impact of 

antagonism and/or synergism.  
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